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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL. NOTE 4275

DYNAMIC STABILITY OF VEHICLES TRAVERSING ASCENDING OR
DESCENDING PATHS THROUGH THE ATMOSPHERE

By Murray Tobak and H. Julian Allen

SUMMARY

An anslysis is given of the oscillatory motions of wvehicles which
traverse ascending and descending paths through the atmosphere at high
speed. The specific case of a skip path is examined in detail, and this
leads to a form of solution for the oscillatory motion which should recur
over any trajectory. The distinguishing feature of this form is the
appearance of the Bessel rather than the trigonometric function as the
characteristic mode of oscilletion.

INTRODUCTION

The speed of many rocketcraft and some aircraft is so great that
they possess ample kinetic energy to permit ejection from the atmosphere.
With the satelilite vehicle, the ballistic rocket, and the skip rocket,
such trajectories are, of course, intentional. With high-speed aircraft
and with glide rockets, although soJourns into space may purposely be
made, they may also accidentally occur if, when in climbing flight, the
dynamic pressure falls so rapidly that the vertical momentum cannot be
checked to prevent such a course.

When & vehicle is in space it may hsve arbltrary orientation with
respect to the flight path and thils orlentation msy change with time. In
the gbsence of air, the history of this orientation can only be changed
by the use of some form of reaction control. However, as the vehicle
descends into the atmosphere 1t will develop motions in response to the
aerodynamic forces and moments which come into play. If the vehicle
possesses positive static end dynemic stabillty, these motions will sub-
gide into the types with which we have become sccustomed from more con-
ventionel aircraft. The whole history of the motion is of interest to
the designer, both for guidance system and structural design and in
determining the feasibility of human habitation.

The dynamic motion of ballistic vehicles has been the subject of
several theoretical Investigations. Oswald (ref. 1) considered the
motions of an unguided rocket in its flight out of the stmosphere. The
general problem of a ballistic missile entering the atmosphere was treated
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by Friedrich and Dore in reference 2. The analysis of reference 3 treated
the entry problem with certein simplifying assumptions regarding the tra-
Jjectory and the atmosphere in order to clarify the nature of the problem,
For all the above anslyses, the zero-1lift trajectory was used.

It is the purpose of this paper to investigate the motion history
for the cases for which aerodynamic 1ift is dmportant in changing the
trajectory. In common with the anelyses cited above, it will be assumed
that the trajectory lies in a vertical plane and that disturbing forces
are symmetric with respect to the vehicle'!s vertical plane of symmetry.
This reduces the problem to one of longitudinal motions only. In order
to illustrate the mechanics of the problem more clearly, the analysis is
concerned first with the specific example of a vehicle which descends
through the atmosphere on a skip trajectory, executes its turn, and is
ejected again from the atmosphere. A detailed study of this problem
reveels the nature of the essential parameters, and this leads to & more
generel form of solution which can be used to calculate the osclllatory
history over any given trajectory.

SYMBCLS
A reference area
Cp drag coefficient, %Zﬁ
o1, 1ift coefficient, %
Cn pitching-moment coefficlent, Pi“hh;glmment
CL@ rate of change of 1lift coefficient with angle of attack,
CL,

da & =+0
Cma rate of change of pitching-moment coefficient with angle of

attack, (B—Cm>

3 /g o
Cme, rate of change of moment coefficient with time rate of change
1l ICry

of angle-of-atback parameter EL, <
Vo3&

rate of change of moment coefficient with pitching velocity
81 dCm

Parameter ¥ —=——{>.

30L/V/y , o
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Cm6 rate of change of moment coefficient with control deflection,
L
B Jg oo

e Naperian base

g acceleration due to gravity

I pitching moment of inertias about center of gravity

gig g Bessel functions of first kind of zero and first order

K, dynamic stebility parameter (eq. (15))

Ko static stability parameter (eq. (21))

% 1lift~-drag ratio

A body length and reference length for moment coefficient
evaluation

m vehicle mass

q dynamic pressure, % pV2

R radius of earth

s distance measured along peth of static trajectory

t time

v flight speed

Ve flight speed on entrance to the atmosphere

W vehicle weight

X distance measured along earth

Y altitude

§°E g Bessel functions of second kind of zero and Pirst order
i

o angle of atback (sketch (a))

o initiel value of oscilllatory angle of attack on entrance to
the atmosphere

B density parameter (eq. (8))
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¥ flight path angle, o -6 (sketch (a))
4 static flight path angle on entrance to the atmosphere
7s static flight path angle
s} control deflection angle —
] angle of pitch (sketch (a))
E dummy vaxriable —
o gir density
Po alr density at sea level
o radius of gyretion _.
w oscillation circular frequency, radians/sec
ANALYSTIS - )

The plan of the analysls ‘o be undertsken is as follows: We shall
present first the equations which apply generally to the longitudinal
motions of a vehicle moving through the atmosphere at high speed. Then,
several sections will be devoted to a study of the equations as they
aprply specifically to the skip trajectory, as this will reveal & number
of lmportant features and permissible simplifications. In a final sec-
tion, these features and simplifications will be exploited to derive a
general form of solution for the oscillatory motion which is epplicable
over any given trajectory.

Equations of Motion

Consider a vehicle moving
through the aimosphere at high
speed, which at time t 1is
approaching the earth along a
flight path depressed from the
horizontal by the positive angle
y (see sketch (a)). The full set
of equations of motion defining
the vehicle's path and the oscil-
lations of the vehicle about theat

T~ path mey be written as

Eorth surface

Sketch (a)

e
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-nV -Cpgh +mg sin y = 0
mVy + C,qA +m<Rl+2§ - )cos 7=0 (1)
16 - qh1l sz =0
wherein
8 =a~-7
CL = CLg™

5 on

and a dot over a symbol denotes differentiation with respect to time.
Because of the dependence on tlme of density p and velocity V, equa-
tions (1) are nonlinear; their solution cannot be effected analytically
unless simplifying assumptions are made. Herein we assume the following:

6 &

1. The aerodynamlc coefficients in equations (1) are essentially
independent of Mach number, a justifiable assumption for the high flight
velocities of interest here.

2. The drag coefficient Cp 1is independent of angle of attack and
pitching velocity, & Jjustifiable assumption so long as these variables
remain small.

3. The equations may be broken down into two sets of equations,
one set defining the “static trajectory” of the vehicle's center of
gravity, the other describing the oscillations of the vehicle about its
center of gravity as well as the oscillatory motions of the center of
gravity about the static trajectory. The justification for this proce-
dure will be evident from the following considerations. Xach of the
dependent variables a, 7, and 6 1in equations (1) is comprised of a
uniform varistion with time plus an oscillatory variation. Hence, let
us make the following substitutions:

7(t) = 75(t) + 7,(%)
a(t) = ag(t) + a(t) (2)
6(t) = 65(t) + 6,(t)

wherein the subscript s denotes the uniform part of each motion and o
the oscillatory part. Now, under the restriction that y, be a small
gquantity, so that
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7o
Ys 1

4
sin 7s<? + ;9 ® sin 7,
s

7
cos 73(# + 73 = cos g

equations (l) may be grouped as follows:

!
o
_/

-nV - CpgA + mg sin Vg =

!
(@)

[mv?s-+qACLng-+m<%¥;§ - é)cos 73} -+ [mV&O-FqACngb] —
5y - 5 (3)
[IGS gAl @maous +Cy 7 + Cmg, By Cm58>] +

[Ié'o “1“<°ma°‘o+cmq'évo_z +cma5§,’—7' ] =0

In each of the last two equations, the second bracket is & sum of oscil-
latory quantities whereas the first bracket is not; under the assumption
that over a given cycle of oscillation the velocity V and dynamic pres-
sure q remain essentially constant, the average of the second group of
terms over the cycle must be near zero. Hendéé, so mst the average of
the first. But since the behavior of the first group of terms is not
oscillatory, in order that its average be nedr zero its value at any
time must be near zero. Therefore, we can assume that each group of
terms in eguations (3) is independently zero. We have then for the non-
oscillatory or "static" trajectory S

-m - CpaA +mg sin y4 = O
. V2
nN75-+qACLags-+m Ty gjcos y, = 0O
, } (%)
g1 1
'qM<Cma°ﬂs+Cmq% m@“‘f} + cm85>= 0
6s = ag ~7s )

and for the oscillatory motion
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Vo +QACL G0 = 0 )

I
Q
~"

T, 'QAI<Cma,@o+Cmq GVLZ + Cmg “—“}% (5)

85 = %o =70 J

The set of equations (5) can be combined into & single equation for the
oscillatory angle of attack of the form

o +f1(t)do +£2(t)ag = O (6)

wherein

VA1

%% - (Cmg + Cmg) 57

o862 E ()

£1(t)
(7)

Skip TraJjectory

The differential equations (%) to (6) are applicable to the analysis
of arbitrary static flight paths and their accompanying oscillatory his-
tories. We now consider the application of equations (&) to (6) to the
specific case of a skip trajectory under the simplifying condition that
L/D 1is constent.

Static trajectory.- Since Cp has been assumed constant, the
specification that L/D be a constant means that ag is also fixed.
This permite the variation of flight path angle with time to be deter-
mined from the first two of equations (4). The third equation specifies
how the control motion is to be programmed in order to maintain constant
L/D. We shall not be concerned with the latter problem here.

The static skip trajectory for constant lift-drag ratio has been
determined in reference 4 under the assumption that: (1) the air density
veries with altitude in the manner

p = poe—By (8)

wherein p, and B are constants, and (2) the effect on the path of
gravity end the term V2/(R+y) mey be ignored. The first assumption is
an adequate one (see ref. 5) over the range of altitudes for which the
aerodynamic forces are important in determining the path, provided the



8 _ NACA IN L275

constants Ppo 8nd B are appropriately chosen. In most cases the velues

0.003% slugs/ft> .
(9)

Po

6o a L
22,000 £t

are satlsfactory and will be used in this report. The second assumption
is necessary to keep the functicnal relations simple., It is a satisfac-
tory one when the flight velocity is high and the aerodynsmic forces
experienced during the skip are large (see ref. k). For present purposes
it is felt to be sufficlent, since ocur concern is more with the nature of
the motion problem rather than with an accurate evalustion of the motion.
Nevertheless, the adequacy of this assumption will be reviewed leter in
this report as it affects the guantitative results.

If one defines 7, a8 the instantaneous static flight path angle
and yp &as the static flight path angle at the "entrance" to the atmos-
phere, then the analysis of reference I gives the velocity and density
dependence on Yy, as

Ya " 7’p 3
) .

V = Vge / 3
By _ 2pm $ (10)

P = Pue = = (cos 75 - cos ym)

(o] GLA 8 E .
= = tant
CL, = Ciyas = constan )
The coordinates of the flight path can be found from equations (10) to be

C
B 2pm(cos yg - cos yg)
(1)
1 ) ten yg/2+ ten|y4/2|
tan @ ten ygp/2 - tan!ys/El

In the equation for x +the minus sign is used for the incoming path and
the plus sign for the outgoing.

The path lengbh & measured from the bottom of the skip can be
shown to be
1 - ‘tan 7E/2+tan|7's/2l

=¥ pem 7E  \ten yg/2 - tan|y./2| (12)

8

wherein, as with x, the minus sign is used for the incoming path and
the plus sign for the outgoing.
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Oscillatory motion.- Having eliminated .ag from equations (10) and
7o from equations (5), henceforth we shall omit the subscripts s and o
as no confusion should ensue. It will be understood that in referring
to o we mean the oscillatory angle of attack, whereas in referring to
7 vwe mean the flight path angle of the static trajectory.

Consider now equation (6) for the oscillatory angle of attack. It
will be found convenient to consider the independent variasble as 7 (=7g)
rather than t. Using the relations

!
5 = ' () a‘%

a2 N a2
== -=d (7)(59 +at(y) =%

Y=g > (13)

L;D
3¢ = ~PVge (cos y - cos 7g)

RO
at2 L/D  cos 7y -cos v

we find, after some manipulation, that equation (6) becomes

|

«"(7) +E£5(7)at () +£,(7)a(y) = O (14)

where

sin ¥
cos y = Cos 7g

£4(7) = Toos _lcos 7a) [g;"" sin y - % ElT G)ZJ -
[(Clia L}D . Cmglc';m <%>2:, (15)

e =01

and the primes indicate differentiation with respect to 7. Finally,
following the method of Friedrich and Dore (ref. 2), we remove the first-
derivative term in equation (14%) by means of the transformation

4
- f £5(E)dE 6

£a(y) = 2K; -

J

a(y) = @(y)e
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whereupon equation (1L4) becomes -

@' (y) +M(y)a(y) = 0 (17)
with

M(y) = £a(7) = 5 £5'(7) = § £(7) (18)

Alternate solutions of equation (14) are presented in the following two
sections,

Method of Friedrich and Dore

Before proceeding to the solution of equation (14) which was used in
the body of the report, it is useful to present an alternate solution
based on the method of Friedrich and Dore (ref. 2). Such a solution is
applicable under somewhat more general circumstances than those of prin-
cipal concern here and, hence, may prove valuable in other applications.

In the method of reference 2, 1t is necessary to assume that some
technique is available for calculating the motion oY) from the entrance
condition down to some point 7p at which point a(yP) is at the pesk
of a cycle. Let this value of "o be called ap. Then an excellent
approximate solution for the envelope curve of the o oscillation from
this point forward is

1
M(7p) TH/cos 7p=cos Yg\Z K, (7, - 7) (19)
wnax (7) = O"P[ ](cos y = cos 7E> e P

M(7)

where M(y) is given by equation (18). Equation (19) can be used to
estimate the magnitude of the o motion under fairly wide variations of
the atmospheric, serodynamic, and inertial parameters. Further, using
equation (19) and following the arguments of reference 2, one can go on
to compute the detailed history of the angular oscillations, frequencies,
etc., These results will not be presented here in full, since their deri-
vation is well described in reference 2. Also, primarily because the
expression for M(y) is very complicated, *he full expressions are some=
what unwieldy. For the conditions of concern in this paper, however, it
will be shown later that M(y) is given with good accuracy for all values
of vy, except those very near TR by

Ko
M(y) = cos 7 = cos yg (20)
where
2
e - i (3) @)

1]
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Since in equation (19) it must be assumed that 7y < 7p < 7g> ‘the approxi-
mation (20) can be used, and equation (19) simplifies to

1
cos yp -cos yg < K _
U (7) = mﬂ( Cos y - coB 7E> € 2(7p=7) (22)

Alternatively, the form of the dependency of opgx on stmospheric density
can now be demonstrated explicitly by use of equation (10); thus

1
(yp) e -
omax(y) = aP[E(y? ] eK1(7P 7) (23)

Finally, under the assumption that the static flight path angle does not
change radically from its initial value, sapplying the small-angle approxi-
mation to equation (10) permits equation (23) to be written as

cums(7) = [2(;1)3) ie7\1[p(?’) -p(rp}] , >0
1
_ [Zgl);)]zexltpm)—p<7PHeM[°(°>‘p(7” ,  y<0 (2k)
+with
A = ﬂlﬁ (25)

The first of equations (24) applies to the descending phase of the %ra-
Jectory, the second, to the ascending phase., To the same order of accuracy
as equation (22), the variation of oscillation frequency (in radians/sec)
is found to be

77w
L/D

w = BVg (Kz(cos y - cos 7g) (26)

Alternatively, using equations (10) again, we may put equation (26) in

the form
CrAK,
w = /E_EETE V(yWe(?) (1)

The variation of mexirum angular velocity mey be found approximately from
equations (24) and (27) according to

&max(V) = amax(7)w(7) (28)
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Tt will be noted in equations (2l4t), equation (27), and so, also in
equation (28), that in effect the detalls of the particular trajectory
under study have been eliminated. Hence, these expressions may be expected
to yleld at least qualitative estimates of omgy, Gmgx, and @ for other
trajectories not too dissimilar from the one considered here. This point
will be exploited later as a means of studying the effects of gravity on
the motion. :

Bessel Function Solutions

We now develop an epproximate solution to equation (17) from whose
form the main characteristics of the motion can be deduced with relative
ease. Basically, the solution depends on finding an adequate approxima-
tion to M(y) over the entire range of 7. This can be done by conslder-
ing the relstlve magnitudes of the terms in M(y) for some representative
values of the parameters. Such a study was carried out (see appendix)
and it was found that for all values of 7, M(y) can be approximated with
excellent accuracy by

K l-cos y cos yp
M(y) = coBs 7 "_2COS 7 + )+ )2 (29)
E (cos y - cos 7g
Now since is of the order of lOs, it is clear that the second term

in equation (29) is trivial compared to the first for all values of 7
except those very near yn. Since the Friedrich-Dore method may be
applied only after the moftion has completed at least one half-cycle,
values of ¥ near yp are auntomatically excluded; hence the second term
may be discarded and we have the approximation used previously in equa-
tions (20) snd (22). Here, however, we seek another approximestion which
will include the first half-cycle. Such an approximation cen be made if
we require that 7, the entrance angle, be not too large. In this case,
using the small-angle approximation, we have for yp>7>0

=7 +7
cos y -cos yp = 2 sin(:yE2 )Siﬂ(?EE ) ® (yg-7)ein yg (30)

Likewise, 1in the range O0>7>-7g, the appropriate app:oximation is
cos y ~cos yg ® (yg+7)sin 7g _ (31)
As for the second term in equation (29), since it is of significant

magnitude only for values of y mnear 7g, & valid approximation to the
numerator is required only for those values of ¥. Hence,

1-cos y cos yp = l-coszyE = sin?yE (32)
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Finally, therefore, using equations (30), (31), and (32), we have as
approximations to M(y):

YE>7 >0 ; 3
M(y) = =2 + —2
TETY Wyg-9)®
0>y>-7g 3 f (33)
Mly) = —2_ + 1
7) = a7 byg+7)®

wvhere

Ko
K2 = 5Tn 7E

The first of equations (33) is to be used for that part of the trajectory
in which the vehicle descends tThrough the atmosphere; the second, after

the vehicle begines to ascend. The two phases will now be considered in
turn.

Descent phase.,- Letting the variable be 1 = TR~ 7> end substituting
the first of equations (33) in (17), we have for the equation of motion
in the range O<n<yg,

a'(n) + (K—nz + ﬁl-_z &(n) = 0 (34)

The solution to this equation is known (cf., ref. 6) and gives

) =7 [aJo(eJrzﬁ) s byo(e@ ] (35)

where Jo(z) and Yo(z) are, in Wetson's notation, the zero-order Bessel
functions of flrst and second kind, respectively. The exponent in equea-
tion (16) may be evaluated by straightforward integration, whereupon,
reverting to the original variable, we have for the o motlon

) = 20277 ais o olrg 7)) + eavole Rz 7)) (36)

The constants a,; and ap are of course to be evaluated by specifying
the initial conditions. If we specify that the vehicle enter the
atmosphere at initial angle of attack ap and without angular veloeity
then the second term in equation (36) vanishes; hence the o motion in
the descent phase is given by
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a(y) = dEeKl(yE -7)J0<2Jﬁ2(7E-7)> 3 rg>7>0 (37)

Ascent phase.- With the variasble now 1 = 7m +7, substitution of the
second of equations (33) in (17) shows that the equation of motion is of
the same form as equation (34). Hence, the solution for &(ny) is again
given by equation (35). After evaluating the exponent in equation (16)
(with the limits of integration, 0> E&>7y) we get

) = & oso(afalrg 7)) + axfalrg 77 )] (38)

The constents of inbegration again may be evalusted from the initial
conditions, which are, of course, the end values of the descent phsase.
From equation (37), with ¥ = O, we have =

N

a(0) = orEeKlyE Jolu)

a'(0) = aEeKlyE[-KlJo(u) +j;_—§ J:L(H-)] > (39)
k=2 [rayg J

Using equations (39) together with (38), we may evaluate the constants
c and 4, whereupon the o motion in the ascent phase 1s found to be

_ K:L(?'E "7’) JO.(H)YJ_(F’-) + Jl(ll)Yd(P) -
aly) = age E {[Jo(u)Yl(u) -Jl(u)Yo(u)]Joé'an(yE-”))

Jolp) T (p) }Y . _
E[JO(M)YJ_(P-) - Iy (1)¥o(u) °<2'JK2E7E+7)>}’ 0>y >-rg
(ko)

Finally, it 1s clear that the same technique used to cast equa-
tiones (2%) to (28) solely in terms of atmospheric density may be used
in the resulte (37) and (40) as well. Thus, we have as an alternate
solution for the motion in the descent phase

aly) = orEeMp(y)Jo(Eszp (7)) 5 rg>7>0 (¥1)

Likewise, the solution in the ascent phase becomes
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A -
0 A o)

Jo(p)Ja(u) } )
2[J°(u)Yl(“') - J1(r)Yo(R) O(.ﬂ\zpz?)) ? 0>7>-7g (42)

where

ACIK, )
" 2Bm sin 7E

k CrA
~ 2Bm sin 7p

= 2,/2zp(0) )

>J
| %]
|

(43)

5
|
-~

T
|

DISCUSSION

Speclal Cases

It is instructive to study equations (37) and (L0) under some
special conditions, as the character of the motion then can be deduced
almost by inspection. Thus, let us assume that the damping coefficient
K, in equations (37) and (ﬂo) is smell enough to be neglected, and let
us examine in turn the three special cases: (1) Ji(p) = 0; (2) Jo(p) = 0;
(3) Jo(r)¥a(w) +J1(w)¥o(n) = O.

case (1); Ji(n) = O.- Since in the descent phase ofy) is dependent

only on the Bessel function Jo(2,’n2(7E-7)), and since J3(p) = -J5'(1),
the condition Ji(p) = O is to be interpreted as meaning that o 1is at
the peak of a cycle at the instant the static trajectory is &t its lowest
point. The « motion in the ascent phase then reduces - to

a(y) = aEJo<2./K2Z7E +7)> 3 0>y>-7g (L)

Hence, we £ind that the motion in the ascent phase is simply the mirror
image of the motion in the descent phase; that 1s a{y) is an even
function gbout 7 = O as shown in sketeh (b).

Case (2); Jo(u) = 0.~ With Jg(u) = 0, « passes through zero at the
lowesT point of the static trajectory. Equation (40) reduces to
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aly) = -aEJo<2~1K2(7E+7)> 3 0>y>-yg (45)

Hence, the motlon in the ascent phase is the negative mirror image of the
descent phase; that is, a(y) is an odd function about 7 = O as shown in

!
*L +a
r \/\A/\
A RIS

Sketch. (b) Sketch (c)

Case (3); Jo(p)¥1(p) +J1(p)¥o(p) = 0.~ Examination of this Bessel
function combination for large values of the argument reveals that it is
zeroc when o has completed either one-quarter or three-quarters of sa
cycle st v = O. Equation (40) reduces to

a = ¥0.EYO<2.}R227E+75> 3 0>7>-rg (k6)

ag

Note that, unlike the two previous cases, in.this case the vehicle leaves
the atmosphere with an angular velocity, as shown in sketches (d) and (e),
since the < ¥y Bessel function approaches infinity as the srgument
approaches zero. Although af(y)>» as 7 -¥g , nevertheless, the

A
RILAY

A\
\/VV\/ =

Sketch (d) Sketch (e)
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angular velocity a(t) is finite, since 7(t)»0 as r*-7m. By the

appropriate limiting process, the value of a(t) acquired by the vehicle
as it leaves the atmosphere may be calculated to be (for Ky = O and
case (3))

_27E
do i1 L/D
== =F- e BV sin L)
(;t oxit | % EPYE 7R (

More generally, when K; 1is not neglected, and for an arbitrary value
of «(0), the angular velocity at exit is

1
-2y - Ky
(g'_%)exit = ~BVgagp sin 7EJ0(IJ-)J1(U)3 E(ﬂﬁ ) (48)

Hence, for sll but the special cases (1) and (2) we may say that the
vehicle will tumble as it leaves the atmosphere, with a rate given by
equation (48).

Osciliation History for Representative Vehicle

Tet us now use the full equations (37) and (40) to determine the
oscillation history of a vehicle representative of & type which might be
sultable for flight at very high velocities and sltitudes. The airframe
selected consists of a low aspect ratio triangular wing mounted on a
conicel body, 50 feet in length. We assume it capable of developing an
L/D of 6 at angle of attack of 0.1 radian. Calculations indicate that
a representative value of the demping factor K; for such an airframe
is of the order of -10; the static stability factor Kz 1is of the order
of 3x10% for a static margin of 3 percent. Let us also specify that the
vehicle have an over-all range of 4000 nsutical miles, so that, using
resulte deriveble from reference li, we have that the vehicle enters the
atmosphere on the skip phase of its trajectory with an initial velocity
of 14,5000feet per second and with the flight path inclined initielly at
Yp = 12.2~.

In figure 1 is shown the history of the angle-of-attack oscillation
together with the static skip trajectory. Also shown dotted is the his-
tory with the damping factor K, taken as zero. It will be noted that
on the descent phase, even with zero demping, the motion subsides very
quickly because of the powerful influence of increasing stmospheric
density on the serodynemic restoring moment. On the ascent phase, how-
ever, the aerodynamic damping is surprisingly effective in keeping the
amplitudes small as the vehicle gains in altitude. Also, it should be
noted thet the value of p for this example (eq. (43)) is such that «
passes neither through zero nor a peak at the bottom of the skip; hence,
the vehicle will tumble as it leaves the atmosphere. The tumbling
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rate does not appear to be very serious, however; for the present example,
with ag = 5° and even with K, taken as zero, it is calculated to be of
the order of one revolution every thirty minutes. With the damping factor
included, this result is diminished seventyfold =~ to the order of one
revolution every thirty-five hours. -

Genersl Form of Solution

If one examines the results of references 2, 3, and those of this
paper (all dealing with the oscillatory motions developed by vehicles on
entering the atmosphere), one finds a feature in common that is a deparxr-
ture from the famillar characteristics of conventional aircraft motions;
namely, that the characteristic mode of oscillation is described by a
Bessel function rather than a trigonometric function. Physically, the
reason for this is clear since, as & vehicle descends through the stmos-
phere, the rapidly increasing atmospheric density csuses the aerodynamic
restoring moment to act in the manner of a stiffening spring. Thus, the
oscillation must tighten both in amplitude and frequency, and this is
precisely the behavior described by the Bessél function.

It already has been demonstrated (egs. (41) and (42)) that the Bessel
function solution for the oscillatory motion during the skip trajectory
could be put in a form that is, in effect, independent of the type of
trajectory. We wish now to show that this form will in fact recur for
any trajectory, or any part of a trajectory, in which the direction of
flight does not change rapidly with altitude. To this end, let us con-.
sider equation (6) again, and now change the independent variable to
altitude y. The resulb is :

a"(y) +os’(3r)[7'(y)cot 7+% % - v—;%;; fl(y)]"'F#nzy' f2(y)aly) = 0
(49)
with -
10+ B @ o)
- (50)
to2(y) = - %Z—:A (%')201%

and where we have retalned only the dominent term in f£5(y). Now, in
meny cases (for example, on entering or leaving the atmosphere) ¥ will
change only very slowly with altitude. Hencé, let us assume

y'(y) =0, sin y = constant (51)
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Equation (49) becomes

@' (y) + o (y) [‘J; i;’, + 267\30(3’)]+B Nap(y)a(y) = (52)
with
o(y) = poe-ﬁy )
S IR SOICKE N B
N2 = 25321117, sin2 ()Cma' EBmC];linz J

Note that Ag and A have the same form as A, and Ay, respectively, in
equation (43) except that now A; does not contain the drag coefficient
and vy 1is not necessarily the en'l:ra.nce fllght path angle. Making the

same transformastion as before,
d
f y[l T+ esxsp(g)]dg

a(y) = a&(y)e (54)

we have

T (y) +N(y)E(y) = 0 (55)

with
N(y) = B®noply) - -2- gy- l}; g; + EB?\sp(y)] i [%, g, + EBksp(y)]z (56)

Now since N, 1is proportional to Ko whereas the bracketed term is
essentially proportional to K., it is easy to show (see appendix) thet
the contributions of the two terms containing A5 and V are small
compared with that of the first term. Reta.ining only the first term in
equation (56), we get for the differential equation

T (y) +BEp(y)E(y) = O (57)

in which form the nature of the serodynamic spring is clearly evident.
The solution to equation (57) is

a(y) = 0130@m>+ CaYo@m> (58)
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Consider now the exponential factor in equation (54). Recognizing that

% %% can be written as é% (in V), we see that this term is immediately

integrable. The exponential term becomes

y
-B [ Mgp(Elat
V(y.) Y1
e _
T (59)
Note that the damping factor Az has been kept inside the integral,
slnce by this means we extend the validity of the analysis to cases

wherein A5 may be dependent on altitude. Then, combining equations (58)
and (59), we have as a general form for the oscillatory motion

1 e'é\/hyxsp(ﬁ)dﬁ[

a(y) = e

Equetion (60) has the following virtues which make it particularly
suited to studying the oscillatory history. First, it is clear thet the
effects on the motion of gravity, variations in the drag coefficient,
and use of thrust are all automsticelly incorporated by using in equa~
tion (60) values of V(y) derived from an accurate solution of the static
trajectory equations. Second, one cen account for the effects of varia-
tions with esltitude of the demping parameter A5, Finally, equation (60)
can be used to derive a simple criterion whose satisfaction ensures that
the motion is convergent at any altitude. Thus, noting that the envelope
of the oscillations varies according to

clJo@JW>+ czYo@Jm)] (60)

-nykap(s)dg
omax(y) = S2)e _ (61)
[a(y)1% -
we have that the motion is convergent during a descent provided that
0 pex(y)>0. This is ensured if
Bha(yo(y) - § 2L >0 (62)

Again, it should. be noted that the relation (62) correctly includes
gravity effects when these are included in q(y). In this respect,
equation (62) is & more precise statement of & similar result presented
by Allen in reference 3, in which gravity effects are neglected.

Next, it i1s in order to show that the form of equation (60) does in
fact reduce to the form derived previously (egs. (41) and (42)) when
gravity effects are not excessive. To see this, consider the first of
the static trajectory equations (egs. (4)). We have



NACA TN L2275 21

CpA
_&nsinyp(y-) '%

__bo(y) [, _Wsiny
T 2m sin y A g

<lIH
g%
|

(63)

From the second of these forms, 1t 1s clear that the gravity term can be
ignored over any part of a trajectory in which the inequality

q W
[sin ¥| > Cph (64)

holds. Alternatively, as a more general expedlent one may average the
bracketed quantity in equstion (63) in some sense and cell it an effec- -
tive constant drag coefficient, say Cpg. In eilther of these clrcum~
stances, equation (63) can be integrated. Using the latter, we get

ACDg

" SPm sin y [o(y) - p(y1)]

V = V(yl)e (65)

Combining this result with equation (60) for the case A5 = constant
then glves

1

aly) = &0 [cl.ro@m>+cayo(em ] (66)

with

e - gt (%o () (o o)

" Clearly, equations (41) and (42) are in accord with this form merely with
the substitution of y for ¢ as the independent variable. Further, by
making use of the properties of Bessel functions for lasrge values of the
argument, one can show that the amplitude and frequency of the oscilla-
tlon vary essentially as

: Ap(y) A
dma_x(y) = < )e T
[o(y) I¢ > (67)
w(y) = ./BACL v(iyNe(¥)
J

in confirmation of equations (2&4) and (27). Finally, it should be
emphasized that should the inequality (64) become an equality, Cp, is
to be put equal to zero in equation (66). This of course is also
reflected in equation (60) by the Pact that V becomes constant.
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Arbitrary trajectories.- Although equations (60) and (66) are
strictly applicable only while ¥ remains essentilelly constant, in many
instances the fact that ¥ changes will be of no consequence, since, if
the exponent is negative and the density increasing, the motion damps so
rapidly that by the time 9 has changed significently o is only a small
fraction of its initial value. This is the case for the ballistic trajec-
tory (ef., ref. 3). On the other hand, should the sign of ¥ change over
the trajectory, as 1t does for the skip path, or if greater accuracy is
desired, then. the trajectory can be broken into an sppropriste number of
straight-line segments (none having zeroc slope, however), over each of
which equations (60) and (66) apply strictly. The parameters A1, Az,

As and constants Ci, Cp will then change from segment to segment, the
first three being dependent on the value of sin 7 (see egs. (53) and
(66)), the second two being determined so that the initial conditions at
the start of a segment match the end conditions of the preceding segment.
It is interesting to note that the results previously obtained as equa-
tions (41) and (42) for the skip
trajectory can be reproduced by
this procedure if, after deriving
the equations corresponding to a
static trasjectory composed of two
line segments inclined at 7g and
ve equotions for
this frajectory -Yp, respectively, one then assigns

values tc the ordinate y corre-
3?%3&1?%2?;&3&, sponding to those of the actusl
trajectory. Sketch (f) iITustrates
the procedure, which obviously can
be extended to apply to arbitrary
Sketch (f) trajectories.

Effect of gravity.- The obvious advantagé of equations (60) and (66)
is that they may be used with any static trajectory whenever the altitude
and velocity histories are given. As an immediste consequence, we may
now evaluate the errors in our former results (egs. (37) and (40)) caused
by having neglected the gravity terms in the solution of equations (&)
for the static skip trajectory.

In order to carry out such a study, the static trejectory equa-
tions (4) with gravity terms included were solved numerically for the
same conditions as were used for figure 1.1 Having the new altitude and
velocity historiles, we could then use equations (61) and (67) to estimate
the variations in opsy and w corresponding to this trajectory. Results
for the static trajectory and veloclty histories with gravity included
and omitted are shown in figures 2(a) and 2(b), and the corresponding

1The term mV2eéds 75/(R+y) in the second of equations (b4) was neg-
lected in. these calculations in order to isolate the effects of gravity.
For velocities of the magnitude considered here, its effect on the itra-
jectory is small compsred with that of gravity, and in the direction of
reducing the differences between the results with gravity terms included
and omitted.
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variations of amgx and w in figures 2(c) and 2(d). It will be noted in
figure 2(a) that because of the initial gain in flight speed (fig. 2(b)),
the true static trajectory descends sooner into the atmosphere and also
deeper, by about 15,000 feet. The effects of these changes on the oscil-
latory angle-of-attack envelope (fig. 2(c)) are evidently not excessive;
however, the frequencies are significantly increased (fig. 2(d)). This
is a reflection of the fact that whereas the envelope curve varies as

the fourth root of density, the frequency varies only as the square root.

We should note that the above effects of gravity diminish as the -——
trajectory becomes steeper. To illustrate this, a set of curves paral-
leling figure 2 has been prepared for the case of a skip rocket having
an L/D of 3 rather than 6. In order to achieve the same 4000 nautical
mile range, the entrance angle in this event must be increased from 12.2°
to 18.6° and the entrance velocity from 14,500 to 18,200 ft/sec. The
results are shown in figures 3(a) to 3(d), and it is clear thet here the
influence of gravity is not significant either as 1t affects the static
trajectory (figs. 3(a) and 3(b)}) or the oscillatory quantities (figs. 3(c)
and 3(d)). On the other hand, however, since the accelerstive loads
become very lerge during steep skips, it would appesr that a shallow
trajectory of the type shown in figure 2(a) might be a more likely pros-
pect for practical consideration than the one shown in figure 3(a). For
such shallow flight paths, in order to obtain a static trajectory of
sufficient accuracy, the gravity terms probably ought not be discarded
in equations (). Once having obtained the static trajectory, however
(by whatever means), equation (60) or (66) cen always be used to
campute the osecillatory motion.

CONCLUDING REMARKS

An analysis has been carried out of the oscillatory motions of a
vehicle which traverses a path through the atmosphere at high speed.
The main results may be summarized dbriefly as follows: TFor any part of
a static trajectory in which the filight path angle does not vary greatly
with altitude, the oscillatory angle of atitack and circular frequency
will have the form

y
aly) = & Bfmx;; e [clJO@W>+czyo(am)]
w(y) = KW(yWe(¥)

where p(y) and V(y) are, respectively, the atmospheric density and
flight speed as functions of altitude., Since a trajectory can always be
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decomposed into straight-line segments, over each of which the above
equations apply, it is possible to say that given the altitude and veloc-
ity history of a static trajectory, the corresponding oscillatory motion
can always be computed by the use of these equations.

Ames Aeronsutical Leboratory
Natlonal Advisory Committee for Aeronautics
Moffett Field, Calif., Feb. 25, 1958
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APPENDIX
SIMPLIFIED EXPRESSION FOR M(y)

The purpose in this appendix is to demonstrate that, for representa-
tive values of the parameters, the coefficient M(y) can in fact be
simplified to the form given in the text as equation (29).

Written in full, M(y) is expressible as

C
- 1 Lo 1
M(7) = (cos 7 -cos 7E) I:B:Ln 7<CI. + Kl> + I cos 7+K2] +

l-cos y cos 7q Cr 1 CIDqCLq, A
k(cos 7 -cos 7g)% [CL Lp T T oZ (E>+Kl ] (A1)

where

S A G =IOl
2Tt BZ<>

Hence, (comparing equation (Al) with equation (29)) we must demon-
strate that the quantity within the brackets of the first term in equa-
tion (Al) is essentially K, and that the third term is negligible
compared. with the other two.

Consider now an airplane configuration which might be selected for
flight at very high altitudes and velocities, ILet it have a low aspect
ratio triangular wing mounted on & conical body. A generous L/D for
such a configuration is 6. As further specifications, let the vehlcle
have an over-all length of 50 feet, a trim angle of attack of 5. 73° and
(to prejudice the case against the argument) a static margin of only
1 percent, measured in body lengths. Then

L.¢-

D

CLCL

—_ = ]10 A2
) (a2)
Cmg, 1

G, - " 10
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and, using linearized potential theory for triangular wings having
supersonic edges,

s
+Cmg, 4
CL, TT2
L (A3)
Onfy
=2 5
- J

Assuming the body to be uniformly solid, we find the moment of inertila
gbout the center of gravity is essentially

I= % m1Z (Ak)

(%)2 = 22 | (85)

so that

Hence, with

L _ 22,000 _ 0

Bl 50
5
Kp = 968
K, = -10.4 : $ (A6)
CLu, 2
[gj@ s "mgf (3) 4] = -2
J

Obviously, then, even with an extremely small static margin, the influence
of Kz is overriding in the mumerator of the first term of equation (Al;.
Further, since the smellest the first term can become is ‘Ko/(1 - cos TR} >

the third term is negligible compared with the first for all values of _vy.
Therefore, M(y) is given with negligible loss in accuracy by

l=-cos ¥ cos ¥
M(y) = =, E (A7)
cos y =cos g  L(cos y - cos 7g)
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Pigure 3.- Effect of gravity on trajectory and oscillatory history of a
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